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ABSTRACT 

Convolutional encoding with sequential decoding is one 
of the best coded communications systems available for 
spacecraft telemetry. When implementing a sequential 
decoder, a decoding confidence measure based upon the 
received signal probabilities is used. The best known 
measure is the "log-a-posteriori probability metric." This 
paper describes and derives this metric in detail. Tabula­
tions of the metric for various telemetry system param­
eters  are also given. Both a continuous and a quantized 
metric a re  treated for various symbol signal-to-noise 
ratios on a Gaussian channel. Quantized symbol metrics 
a re  tabulated for 2, 4, 8, and 16 levels, and it is shown that 
the quantized LAP metric is an approximation of the ideal 
continuous metric. 
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THE LOG-A-POSTERIORI PROBABILITY METRIC 
FOR USE IN SEQUENTIAL DECODING 

bY 
T. V. Saliga 

Goddard Space Flight Center 

INTRODUCTION 

During sequential decoding on a continuous, binary-symbol, communications channel, each re­
ceived symbol has two weights. One weight is a measure of confidence that a binary "1" was trans­
mitted, and the other is a measure of confidence that a binary "0" was transmitted. If the weights 
a re  proportional to the symbol's matched-filter correlation voltage, then the decoder is said to use 
a "correlation metric." A better measure, however, is one in which the weights a re  proportional to 
the probability that a 1or  0 was sent, given the correlation voltage (References 1 and 2). This is 
called an "a-posteriori-probability metric,'' and variations of it are among the best known for use 
in sequential decoding. 

Since the sequential decoding technique itself is well described in the literature, no attempt is 
made to do so here. It is sufficient to say that a sequential decoder, whether it be implemented 
with a general-purpose computer o r  special-purpose hardware, must store a metric table for use 
by the decoding algorithm, and that the decoder's performance is sensitive to the choice of this 
metric. 

When an engineer attempts to implement a sequential decoder, he finds that the log-a-posteriori­
probability (LAP) metric is only briefly described in the literature. No  derivations are given, and 
only the metric for a particular set of conditions is given. This paper provides a complete step-
by-step derivation of the LAP metric, and tabulations of the metric are given for a variety of 
symbol signal-to-noise ratios and quantization levels. Furthermore, it is shown graphically that 
the quantized LAP metric is an approximation to the continuous metric. 

In the following paragraphs, the channel characteristics for a space data modem are defined, 
and the LAP metric is derived for a memory-less channel with arbitrary noise probability densi­
t ies and for the continuous LAP metric assuming a gaussian noise channel. Because an A-to-Dcon­
version is ordinarily performed at the receiver, a quantized LAP metric is described and tabulated. 
This quantized metric is then compared with the continuous metric. Finally, system operation and 
the behavior of the decoder's branch metric are described with a specific example. 
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THE CHANNEL MODEL 

The mathematical model of the communications channel assumed is shown in Figure 1. 
For each data symbol di  entering the encoder, "vtt binary symbols a re  transmitted. The trans­
mitter sends plus or  minus 6 volts for a 1 or 0 symbol, respectively. The modulation power 

OUTPUT SYMBOLS 

DATA CONVOLUTIONAL 
ENCODER 

1 or 0 

+Gv 
J & , 

Ts + tii
AGC 

AMP. Cij

-6 "0" 
t i j  

I 
SYMBOL METRICS , 1 I I 

~-

M , ( x =  l,Cii) c- CONTINUOUS * -IDEAL METHOD 
~ ~ . - .  ~. 

M,( x = O,Cij) - TRANSFORM 

Figure 1-Communicat ions system model .  

is then s watts. Additive noise n( t) has No watts per Hz single-sided power spectral density. 
A gain-controlled amplifier in the receiver maintains a constant signal amplitude into the 
filter. The matched filter is sampled at the end of a symbol period, giving a correlation 
voltage cij. 

Indices "it'and "j" denote the j t h  symbol associated with the ithdata bit. The correlation 
cij  is a continuous, random variable because of the additive gaussian noise. 

Given each C i j  , the decoder hypothesizes the transmission of a 1 or  0. Let 2 denote this hypo­
thesis; the symbol metrics Mc (%I C i j )  are  then summed by the decoder to compute a branch metric. 
It is impractical to use continuous values in a digital machine; therefore the C i j  correlations a re  
usually digitized. Using more than about 16 levels (4 bit A-to-D) gains little in system perform­
ance (Reference 2). The quantized correlations Qij  a r e  then used to find the quantized metric 
M(2 I Q i j )  
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CHANNEL CONDITIONAL PROBABILITIES 

The symbol's correlation voltage cijwill  ,-me a gaussian probability density since the re­
ceiver's amplifier and filter a r e  linear devices. The mean-to-standard deviation ratio of cij is 
shown in Appendix A to be 

where 

P = mean value of cij, 

u = standard deviation of Cij, 

S = modulation power in watts, 

Ts = duration of binary symbol in sec, 

No = noise density of n( t )  in watts per Hz. 

If xijis a binary 1, then p is some positive voltage; when xij is a 0, then p. is the same voltage 
of negative value. Let the gain-controlled amplifier adjust this voltage magnitude to 1volt. Then 
the conditional densities of cijare  

p(Cij I x i j  = 1) = N o r m a l  

STs-vz 
p(Cij(xij=O)= N o r m a l F  = -1 ,u  = ( 2 ~ )  ] . (3)  

-2 - 1  0 C l  +2Figure 2 shows these conditional densities. Cii (Volts) 

Figure 2-Conditional probability densities for the 
THE SEQUENTIAL DECODER LAP METRIC symbol matched-filter samples. 

A sequential decoder is basically a conditional probability computer. In its algorithmic search 
for the correct path or branch in the coding tree, it computes the probability that the hypothesized 
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symbols G i j  could have been transmitted, given the received C i j  . This conditional branch prob­
ability is 

"n Ln 
(4 )  

where 

G i  = the binary symbols hypothesized by the decoder for this branch, 

k = the number of information bits shifted into the encoder to generate the branch, 

v = the number of encoder symbols transmitted per  input information bit, and 

ci = the received symbol correlation voltages. 

To simplify notation, replace the S i j  and C i j  sequences in Equation 4 with inand C,, respec­
tively. The "n" subscript represents a one-dimensional serial ordering of the sequences and 
furthermore implies n = kv. Using the same notation, Xn represents the actual transmitted se­
quence of kv binary symbols. The conditional branch probability, using hypothesized symbols, is 

n P ( i n  I c,) . (5) 

Equation 5 is the hypothesized "a-posteriori branch probability," which is a measure of con­
fidence that $n = xn. For v 22, a large k, and not-too-high noise, we expect P ( i n  I cn) to be near 
unity only if  in = Xn . Otherwise, it should be small for "good" convolutional codes. An optimum 
decoder selects inso as to maximize this probability. 

The a-posteriori branch probability for true transmitted sequence Xn may be found using Bayes 
Theorem: 

Since the channel model has no memory from symbol to symbol, the symbol probabilities are 
independent. Thus, the sequence conditional probability in Equation 6 may be expressed as the 
product of the symbol probabilities: 
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The P(xn)  is just the branch probability. Each branch is a-priori equiprobable with random 
data, and there are 2k unique branches in an n(= kv) symbol code tree. Therefore, 

P ( X n )  = 2 - k  . (8) 

To simplify the decoder's implementation, an additive measure of probability is desirable. 
The logarithm (base = 2) of P(x, I Cn allows this without disturbing the monotonic nature of the 
conditional probability. Note that very small branch probabilities become large negative numbers. 

Combining Equations 6, 7, and 8; taking the logarithm; and using the double subscript symbol 
indexing gives 

Of course, the actual x i j  sequence is not known, and the decoder must hypothesize these sym­
bols G i j  so as to maximize this probability. Thus, substituting G i j  and letting k = kv/v so that it 
may be combined in the summation gives 

L Node L@ Metric / 
Branch L& Metric 

Thus, the decoder computes the symbol-log-a-posteriori probability metrics and sums them 
over a node (= v symbols). Information bit hypotheses are  based on this node metric. The sum of 
the node metrics then forms the branch LAP metric. 

The quantity 

in Equation 9 is called the mutual information between x and C, and the quantity l / v  is the convo­
lutional code rate. The channel conditional probabilities, p(C I 2 = 1) and p(C I 2 = 0), were given 
in the paragraph entitled Channel Conditional Probabilities. 

Define 



I, 1.11.  ,,-., ..........__......... ~ 

Aand the continuous symbol LAP metric = Mc ( 2  I Ci ;then it follows that 

It is clear from Equation 11 that it is only necessary to evaluate I(% C) for the channel. The 
symbol metric Mc may be found then for any code rate by simply subtracting l / v .  

THE CONTINUOUS SYMBOL LAP METRIC 

The symbol LAP metric M c  (x I Ci ) is a continuous function of C. As noted earlier, it is 
easier to implement when digitized to as few bits as possible. However, it is useful to compare 
the continuous metric to the quantized metric to see how "close" the latter approximates it. 

Define xo to mean P = 0 and x1 to mean P = 1; then using Equation 10, 

For random data and linear parity check codes, it is generally true that p(x0) = p(xl) = 1/2. 
Therefore, 

Likewise, 

Using the conditional densities, Equations 2 and 3, 

I(Xl,c) = 1 -
[-q]

kxp[-91 
= 1 - log, (-5)+ 11 
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Similarly, 

I(xotC). = 1 - log, [exp (+ 5)+ 13 (15) 

Since 1(x0, C) = I ( X ~ ,  -c), it is only 
necessary to calculate I(xl,C) . With p = 1 
volt, then 0 = ( 2 S T s / N 0 ) - 1 / 2  (from Equa­
tion l), and finally, 

exp -4C-
I(xl,C) = 1 - l o g ,  [ ( : ) I  + 1  *(16) 

Figure 3 is a plot of Equation 16 for STJN, 

values useful for v = 2 and 4 codes. Ap­
pendix B is a tabulation of Equation 16 for 
STs/No values of -6 db through +3 db. 

THE QUANTIZED SYMBOL METRIC 

METRIC 
I ( X =  1,C) 

(NOTE CHANGE OF SCALE) 

-2  -1  2 3 
1 I I

I It C IN VOLTS 

/ /  r 

-5 

H 


E "7 I

-I5V+3dY 

-25
- * O I  I 

Figure 3-The continuous symbol metric 
for several ST,/N, ratios. 

As shown in Figure 1, an A-to-D conversion of a symbol correlation C gives r ise  to a number 
Q representing one of a set  of 2M quantiles of C. The quantized symbol LAP metric is defined on Q 

as 

This is similar to Equation 9, but is a ratio of quantile probabilities rather than densities. A 
result analogous to Equation 12 can be readily obtained: 

where, 
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and 

finally, 

M(2 1 Q) = I ( x ,  C) - v1 * (19) 

Before calculation can proceed, there are several practical questions that must be 
answered: 

1. How many A-to-D bits (m) should be used? 

2. Over what range of C should the quantization levels be distributed? 

Jacobs has shown (Reference 2) that the signal-to-noise ratio (SNR) loss between the use of 
16 levels and an infinite number is under 0.1 db. The use of only two levels, however, incurs a 
2-db loss. Selecting the number of levels is a system design problem. The metric is found in 
this paper for 2, 4, 8, and 16 levels. 

Assigning the optimum level is difficult, 
since the exact cost function for the decoder's 
performance is not known. The assignments 

I 1 
I 

I 
I I 1 selected for this paper were chosen to give a 

C IN VOLTS 
good approximation to the continuous metric 
over all c where p(c) was non-negligible. It 
is known from previous simulations that the 

+ 	 level assignments a re  not critical.* Figure 4 
2* 

TWO LEVELS ( m  = 1 ) summarizes the assumptions made. Note that 
the 8- and 16-level assignments a re  a function 
of CT and hence of the particular symbol SNR 
selected. The ordinary A-to-D converter con­
straint of equally spaced quantization intervals 

-t 

EIGHT LEVELS ( m  = 3 )  is assumed. 

k-P +$  Table 1 lists the quantized mutual infor­-u15 @:$j13 [j:2j 1 1 m-r 7 8 
mation, I (xl,Q ) , for four symbol SNR's. Us-SIXTEEN LEVELS ( m  = 4 )  
ing Equation 19, the LAP metric may be easily 

Figure 4-Quant i1  e assignment nomogram. found, given the code rate. 

'Private communication with G .  David Forney, Jr., October 1967. 
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Table 1 

Quantized Mutual Information, I(x = 1, Q), Tabulation 
(See Figure 3 for quantile assignments).  

Quantile 
Number, 

Q 

2 

~ 

1 0.703 

2 -1.42 

3 

4 

5 

6 

7 

8 

9 


10 

11 

12 

1 3  


14 

15 

16 


1 0.992 

2 -2.6 7 

3 

4 

5 

6 

7 

8 

9 


10 

11 

12 

13 

14 

15 

16 


STS/N, = - 4 d b  
p = 1, u = 1.121 

~ 

Number of Levels 

4 8 


0.255 0.340 
0.818 0.743 

-0,31 0.908 
-2.07 0.976 

-0.45 
-1.61 
-3.02 
-4.91 

STS/No = 0 db 
p = 1, u = 0.707 

0.532 0.578 
0.968 0.945 

-0.85 0.994 
-4.52 0.999 

-0.98 
-3.73 
-6.80 

-10.26 

16 2 


0.201 0.843 

0.510 -2.38 

0.712 

0.835 

0.908 

0.948 

0.972 

0.989 


-0.23 

-0.80 

-1.47 

-2.21 

-3.01 

-3.84 

-4.69 

-6.04 


~ 

0.358 0.966 

0.767 -4.45 

0.923 

0.975 

0.992 

0.996 

0.999 

1.00 


-0.47 

-1.75 

-3.26 

-4.88 

-6.54 

-8.21 

-9.89 


-12.12 

ST,/N,, = -1 db 
p = 1, u = 0.793 

Number of Levels 

4 8 


0.450 0.510 
0.944 0.908 

-0.66 0.985 
-3.70 0.998 

-0.80 
-3.02 
-5.56 
-8.53 

STS/No = +3db 
u = 1, 0 = 0.501 

0.788 0.788 
0.997 0.994 

-1.87 0.999 
-8.27 1.000 

-1.87 
-7.01 

-12.38 
-18.04 

16 


0.311 
0.702 
0.881 
0.954 
0.983 
0.993 
0.998 
0.999 

-0.40 
-1.42 
-2.66 
-4.00 
-5.39 
-6.79 
-8.21 

-10.17 

0.539 
0.925 
0.989 
0.998 
0.999 
1.000 
1.ooo 
1.ooo 

-0.87 
-3.31 
-6.06 
-8.88 

-11.70 
-14.53 
-17.35 
-20.71 

9 




-- 
-- 

The symbol SNR's, STs/N,, in Table 1 have been selected especially for rate 1/2 and 1/4 codes. 
With the E,,,/N,* decoding thresholds defined as 3 db and 2 db for rate 1/2 and 1/4 codes respec­
tively, the corresponding symbol SNR's are as follows: 

Threshold 

code rate{;: 
-4 db 

Since most operational telemeters nor­
mally operate above the system's threshold, 
SNR's 3 db above threshold a re  also given. 

C O M P A R I S O N  OF C O N T I N U O U S  
A N D  Q U A N T I Z E D  M E T R I C S  

If the quantized metric is superimposed on 
the continuous metric, as shown in Figure 5, it 
is apparent that the quantized metric is a good 
stepwise approximation to the continuous met­
ric.+ Should a quantized metric be desired 
with different SNR's, etc., one could readily 
use a graphical approximation to the continuous 
metric. 

T Y P I C A L  M E T R I C  BEHAVIOR 
IN A SEQUENTIAL DECODER 

1 Threshold +3 db 

3 db 

-1 db 

i 
3 

CORRELATION (C)­

-- -9 

-10 

- 1  1 

.- ~--12 

Figure 5-Comparison of  cont inuous and 8-1 eve1 
quan t i zed  mutua l  i n fo rma t ion  (ST,/N, = 0 db). 

For a better appreciation of the behavior of a sequential decoder's branch metric when de­
coding a noisy signal, an example is given, based upon a computer simulation of a decoding system.$ 
This example consists of a time record of system parameters during the propagation of seven in­
formation bits through the encoder, channel, filter, and decoder. 

An 8-level, quantized LAP metric is assumed; its assumptions and values a re  listed in Table 2. 
For efficient computer implementation, integer metric table values a re  desired. The M(X I Q) 

values have been multiplied by 20, and the nearest integer value taken as the table value. 

A time record of a rate 1/2 convolutional coded-sequential decoded system using this metric 
is shown in Figure 6. Each data bit d, that enters the system causes two symbols to be transmitted, 

* E B I T , h o  = Received energy per information bidnoise  power spectral density. 

+Metric and mutual information are used interchangeably s ince  theit only difference is the addend - l /v .  

$Saliga, T. V.,  "A Comparison of Sequential Decoding Metrics by Computer Simulation," to be published a s  a NASA Technical Report, 

1968. 
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Table 2 

Metric Table for Example (8-Level LAP Metric for p/u = fi or ST-/N, = 0 db). 

Decoder Decoder
M(2 = 0 I Q) Table Value 

M(2 = 1 I Q) Table Value 

-1.48 -30 
-4.23 -85 
-7.3 -146 

-10.76 -216 
0.078 2 
0.445 9 
0.494 10 
0.500 10 

F 
\ \-

Node 
or Coder :orrelator output 

bit  no. Data bit output, without noise 
I d i  Xij (+I= 1 . 5 ~ )  

1 d, = 1 +1.5 

+ 1 .5 

2 d, = 0 - 1.5 

c1.5 

3 0 - 1.5 

- 1.5 

4 0 - 1.5 

+1.5 

5 0 - 1.5 

- 1.5 

6 1 c1.5 

-1.5 

7 etc. 
-.. 

0.078 2 
0.445 9 
0.494 10 
0.500 10 

-1.48 -30 
-4.23 -85 
-7.3 -146 

-10.76 -216 

SEQUENTIAL 
DECODER 

BRANCH METRIC 
ACCUMULATOR 

L 

4ctwl  correlator 
output 

Quontile 
number, 

Symbol 
metrics 

given X = 

Decoder‘s 
best 

guess, 

Branch 
metric for 
best guess 

Cii ij 0 1 Xij path 

C,,,= 1 .89 3 -146 10 1 10 

c,,,= 2.02 3 -146 10 1 20 

c*,, =-1.64 6 9 - 85 0 29 

- 0.08 5 2 - 30 1 - 1  

- 3.57 8 10 -216 0 9 

-0.07 5 2 - 30 0 1 1  

- 1.78 7 10 -146 0 21 

2.30 3 -146 10 1 31 

- 1.97 7 10 - 146 0 41 

0.44 1 - 30 2 0 11 

0.32 1 - 30 2 1 13 

c,.,= 0.21 1 - 30 2 0 -17 

Figure 6-Operation analysis example. 
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and This in turn yields a pair of 
symbol correlation voltages, C i ,  and C i ,  2 .  

Each of these A-to-D converted values, Qi, 

and Q i , 2 ,  interrogates the metric table for a 
I 

pair of metric values. Depending on the de- I 
I \coder's algorithm and encoder's connections, I 
I \ 

two metric values a r e  summed to form a -60 -\ I 
I 

\ 
\ 
\

node metric for a ai = 1 hypothesis. Simi- -80 - I 
I 

I 
I \ 

I I 
larly, the alternate metric pair a r e  summed I! 

PI -100 - I 
\ 

I 
I 

I- Ito form the node metric for the ii = 0 hy- 2 -120-
I 
I 

Le­

pothesis. The "best guess" node metric is I I
V 
Z -140­added into an accumulator to form the cur- Q, t 

Im 
rent branch metric, and its associated data -160- 1 

I 
bit d i  is stored in a local .data register. -180- \ 

A plot of the behavior of the branch LAP 
-200-
- 2 2 0 t  

I1 
I 

metric versus bit number is shown in Fig-
ure  7. If no bit e r r o r s  a re  made and the -240 

noise is not too large, then the branch met-
ric will increase slowly with "i". With one 
or  more bit errors ,  it will tend to decrease 

-280 

-300 I 

ASSUMED 
I INCORRECT\ BRANCH METRIC5 

I I I 

I 
I 
I' 
I 1 1 1 -

rapidly in value as "i" increases. 1 2 3 4 5 6 7 
BIT NUMBER, i 

CONCLUSIONS F igu re  7-Branch m e t r i c  behav io r  w i t h  a noisy signal. 

A sequential decoder's performance is quite sensitive to the choice of a metric.* Should a 
proposed system have channel amplitude statistics significantly different from gaussian, then a 
new metric table should be found using general results (Equations 11, 12, 13, 17 and 18). This 
should insure that the decoder's e r ro r  probability and overflow probabilities a r e  low. 

The author is not aware of any proof that the LAP metric is the best metric to use in a se­
quential decoder. However, it is the best of the known metrics. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, August 16, 1968 
861-51-75-01-51 

_­
*SaIiga, T. V., "A Comparison of Sequential Decoding Metrics by Computer Simulation," to be published as a NASA Technical Report, 
1968. 
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Appendix A 

Statistics a t  Output o f  a PCM Matched Filter 

It is well known that a matched filter and a cross-correlator have identical output signal-to­
noise ratios when the correlator’s local signal is a replica of the transmitted waveform. For this 
derivation, a synchronous subcarrier, PCM signal source is assumed. A white, additive, gaussian 
noise channel and a loss-less symbol correlator a re  also assumed. Figure A1 is a diagram of the 
communications system model. A loss-less, linear, R F  modem is assumed but is not shown ex­
plicitly. It is not really necessary to include the subcarrier modem since it does not affect the 
results. However, i t  is included just to emphasize that point. 

The following definitions apply to this appendix as well as the body of the paper. 

x( t )  = the serial  NRZ-PCM binary digit source signal, 

f = the subcarrier clock which is synchronous with X( t ), 

NRZ - PCM I-Ld-r; 
BINARY SOURCE 

”,” I I u ,“ I - v  > I \ ­7 


+VS V O L T S F  t / -& t 
-6 C VOLTS 

--CJ SAMPLE I 
7 MODULATOR ADDITIVE AT t =  Ts 

CHANNEL +’nnr\ i ( t )  WITH 
NOISE NOISE ALONE 

-1 

fS 

w 
SUBCARRIER 

DEMODULATOR 

SYMBOL MATCHED FILTER 

Figure Al-Signal, channel, and matched-filter models. 
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Ts = duration of a binary symbol x in seconds, 

S = signal power in watts, 

n( t )  = the additive channel noise; it is stationary, white, and gaussian with spectral density 
No watts per  Hz, and has zero mean, 

K = the integrator's gain constant in sec-l ,and 

C = the symbol correlation voltage at  t 2 Ts in volts. 

Because the noise is additive and the filter is linear, the signal and noise effects on c may be 
found separately and superposition applied. 

Signal Only 

If n( t )  = 0, then C is deterministic for each x. From the model in Figure Al, it is clear that 
for the 2-cycle-per-symbol subcarrier shown o r  for any "n"-cycle-per-symbol PCM subcarrier, 
"e" at the integrator input will always be of the same form (n = 1, 2, 3, . . .). Thus 

and 

Noise Only 

The autocorrelation function of white, gaussian noise will be needed in the derivation below. 
It is well known that the autocorrelation function and the power spectral density are a Fourier 
transform pair. Therefore, 

where 

@ ( T >  = the autocorrelation function of some random signal r ,  and 

P( f )  = the power spectral density of the random signal; 
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@( T) is defined here as 

where n( t )  is the random signal and E( ) denotes mathematical expectation over an ensemble. 

The autocorrelation function of n( t )  may be found from Equation A3 since P( f )  = No is known. 
Thus, 

where S( t )  is the Dirac delta function. 

Now i t  is desired to calculate the probability density function for the "noise alone" matched-
filter output. The effects of the subcarrier multiplier will be considered first. The effect of the 
subcarrier multiplier on n( t )  may be found formally by using the convolution theorem. However, 
it can be simply observed that since the multiplier only multiplies by +1 and -1 and n( t )  is an 
infinite bandwidth signal, then the amplitude statistics of e ,  the product, a r e  unchanged. The power 
spectral density N o  is also unchanged. The noise time-sequence output from the multiplier n '  ( t )  

is different from n( t ) ,  but its amplitude statistics and power spectrum are unchanged. 

The effects of the integrator may now be treated. Since the integrator is a linear summation 
device and the input noise n '  ( t )  has gaussian amplitude probability density, then the output C must 
also be gaussian. Knowing the mean and variance of C will then completely specify its statistics. 

Define C, = the matched-filter output with noise n( t )  alone as input. Then, 

nmean (c,) = E(c,) 

and since the expectation is computed over an ensemble, 

mean (C,) = K r ' E [ n ' ( t ) ]  d t  = 0 , 
0 



where 

E( ) = mathematical expectation over an ensemble of events. 

The variance of C, is by definition: 

va r  (C, ) = E [(C, - mean) 2] 

and 

var  (c,) = E(c:) 

here, and 

The integrals may be combined provided that the integrand parameters a re  made distinct. Thereforc 

('N) = E[Kz Is 1var  [ ' n (u )  n ( t )  du d t  

z K 2 J ~ s / o T s  E[n(u) n ( t ) ]  du d t  ; 

but from Equations A4 and A5, 

NO 
E [ n ( t ) n ( t - T ) ]  = 7 8 ( ~ ). 

Then, 

18 
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Filter Output Statistics With Signal and Noise 

With combined signal and noise entering the matched filter, 

mean (C) = mean ( s i g n a l )  + mean ( n o i s e )  

and 

- KI/S  Ts for  x = 0 . (A9) 

The density of C is, of course, gaussian with variance given by Equation A7. A useful additional 
result is the mean-to-standard deviation ratio of C: 

where 

p1 = mean of c given x = 1, and 

u = standard deviation of C = [var  (C)]  l'* . 
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Appendix B 

Tabulation of the Symbol Mutual Information Function 

This appendix is a tabulation of the symbol mutual information function I(x = 1, c) for a num­
ber of symbol signal-to-noise ratios. This function, or approximations to it, may then be used to 
find the "log-a-posteriori probability (LAP) metric" for use in sequential decoding of binary PCM 
signals. 

By definition, 

I(x = 1, C) = l o g z  
P ( C /  x = 1) ; 

P( C> 

for the gaussian channel, 

I(x = 1, C) = 1 - l og ,  ( i - 4 C S T s / N 0  + 1) , 

where 

x = the transmitted binary symbol, 0 or 1, 

c = the symbol correlation at the output of a matched filter; E(C I x = 1) = 1 volt is assumed, 

S = transmitted modulation power in watts, 

Ts = duration of a symbol in sec, and 

No = noise density in watts per Hz.  

Because of symmetry, it follows that 

I(x = 0,C) = I(x 1, - C )  ; 

therefore, only Equation B2 is tabulated in Table B1. 

Finally, the LAP metric is found as 



where 

v = the number of binary symbols transmitted by the encoder for each information bit entered 
into the encoder. 

~~ ­ -
C in db; db = 10 lo
in - -...- _ _  _ _  ~ _ _  ._. 

Volts -6 -5 -4 -2 -1 1 2 3~. __- _. ~. ~ 

3.00 0.931 0.96E 0.988 0.996 0.999 1.ooc 1.000 1.000 1.000 1.ooo 
2.80 0.916 0.958 0.983 0.995 0.999 1.ooc 1.000 1.000 1.000 1.ooo 
2.60 0.898 0.947 0.977 0.992 0.998 1.ooc 1.000 1.000 1.ooo 1.000 

2.40 0.8 76 0.932 0.969 0.988 0.997 0.995 1.000 1.000 1.000 1.ooo 
2.20 0.850 0.913 0.957 0.983 0.994 0.99s 1.000 1.000 1,000 1.000 

2.00 0.818 0.889 0.941 0.974 0.991 0.997 1.000 1.000 1.000 1.000 

1.80 0.781 0.859 0.920 0.961 0.985 0.995 0.999 1.000 1.000 1.000 

1.60 0.736 0.821 0.891 0.943 0.975 0.991 0.998 1.000 1.000 1.000 

1.40 0.683 0.773 0.852 0.915 0.958 0.983 0.995 0.999 1.000 1.000 

1,20 0.621 0.714 0.801 0.875 0.932 0.968 0.988 0.997 0.999 1.000 

1.00 0.549 0.641 0.732 0.817 0.889 0.941 0.974 0.991 0.997 1.ooo 
0.80 0.465 0.5 52 0.644 0.735 0.820 0.891 0.942 0.975 0.991 0.998 

0.60 0.369 0.445 0.530 0.621 0.713 0.800 0.875 0.931 0.968 0.988 

0.40 0.260 0.318 0.387 0.465 0.551 0.643 0.734 0.819 0.890 0.942 

0.20 0.136 0.1 70 0.210 0.259 0.318 0.386 0.464 0.550 0.642 0.733 

-0.00 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0 .ooo -0.000 -0.000 

-0.20 -0.154 -0.196 -0.250 -0.320 -0.412 -0.532 -0.692 -0.905 -1.190 -1.573 

-0.40 -0.321 -0.413 -0.534 -0.694 -0.908 -1.194 -1.578 -2.092 -2.774 -3.671 

-0.60 -0.502 -0.652 -0.851 -1.118 -1.475 -1.955 -2.593 -3.435 -4.528 -5.932 

-0.80 -0.696 -0.910 -1.197 -1.582 -2.098 -2.782 -3.682 -4.847 -6.338 -8.229 

-1.00 -0.903 -1.187 -1.569 -2 .O 79 -2.758 -3.650 -4.806 -6.286 -8.163 -10.533 

-1.20 -1.121 -1.480 -1.961 -2.601 -3.445 -4.541 -5.948 -7.735 -9.994 -12.839 

-1.40 -1.349 -1.786 -2.369 -3.140 -4.147 -5.445 -7.097 -9.188 -11.825 -15.146 

-1.60 -1.587 -2.1 04 -2.791 -3.692 -4.860 -6.355 -8.250 -10.643 -13.657 -17.452 

-1.80 -1.833 -2.431 -3.222 -4.253 -5.580 -7.269 -9.405 -12.098 -15.489 -19.759 

-2.00 -2.086 -2.766 -3.66 1 -4.820 -6.303 -8.185 -10.560 -13.553 -17.321 -22.065 

-2.20 -2.344 -3.108 -4.105 -5.391 -7.029 -9.102 -11.716 -15.009 -19.154 -24.3 72 

-2.40 -2.609 -3.455 -4.554 -5.964 -7.756 .10.020 -12.8 72 -16.464 -20.986 .26.678 

-2.60 -2.877 -3.805 -5.006 -6.540 -8.484 . l o.938 -14.028 -17.919 -22.818 .28.985 

-2.80 -3.149 -4.159 -5.460 -7.116 -9.213 11.856 .15.184 .19.374 -24.650 ,31.291 

-3.00 -3.425 -4.516 -5.915 -7.694 -9.942 .12.7 74 .16.340 -20.830 .26.482 .33.598 
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